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Abstract

The immune system’s ability to adapt its B cells to new types of antigen is powered by processes known as clonal selection and affinity
maturation. When the body is exposed to the same antigen, immune system usually calls for a more rapid and larger response to the
antigen, where B cells have the function of negative adjustment. Based on the clonal selection theory and the dynamic process of immune
response, two novel artificial immune system algorithms, secondary response clonal programming algorithm (SRCPA) and secondary
response clonal multi-objective algorithm (SRCMOA), are presented for solving single and multi-objective optimization problems,
respectively. Clonal selection operator (CSO) and secondary response operator (SRO) are the main operators of SRCPA and SRCMOA.
Inspired by the clonal selection theory, CSO reproduces individuals and selects their improved maturated progenies after the affinity mat-
uration process. SRO copies certain antibodies to a secondary pool, whose members do not participate in CSO, but these antibodies
could be activated by some external stimulations. The update of the secondary pool pays more attention to maintain the population
diversity. On the one hand, decimal-string representation makes SRCPA more suitable for solving high-dimensional function optimiza-
tion problems. Special mutation and recombination methods are adopted in SRCPA to simulate the somatic mutation and receptor edit-
ing process. Compared with some existing evolutionary algorithms, such as OGA/Q, IEA, IMCPA, BGA and AEA, SRCPA is shown to
be able to solve complex optimization problems, such as high-dimensional function optimizations, with better performance. On the other
hand, SRCMOA combines the Pareto-strength based fitness assignment strategy, CSO and SRO to solve multi-objective optimization
problems. The performance comparison between SRCMOA, NSGA-II, SPEA, and PAES based on eight well-known test problems
shows that SRCMOA has better performance in converging to approximate Pareto-optimal fronts with wide distributions.
� 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in
China Press. All rights reserved.
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1. Introduction

Artificial immune systems (AIS) make use of the mech-
anism of vertebrate immune system in terms of the model
of information processing, and they construct new intelli-
gent methods for solving problems. These methods provide
the evolutionary learning mechanism like robustness, unsu-
pervised learning, self-organization, and memory. There-
fore, AIS have received a significant amount of interest

from researchers and industrial sponsors in the recent
years. Some of the first work in applying immune system
paradigms was undertaken in the area of fault diagnosis
[1]. Later work applied immune system paradigms to the
field of computer security [2], which seemed to act as a cat-
alyst for further investigation of the immune system as a
metaphor in many areas, such as anomaly detection [3,4],
pattern recognition [5–8], job shop scheduling [9,10], opti-
mization [11–13] and engineering design optimization
[14,15]. As de Castro and Timmis said, the field of AIS is
showing great promise of being powerful computing para-
digms [16].
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The immune system’s ability to adapt its B cells to the
new types of antigen is powered by processes known as
clonal selection and affinity maturation [17]. Most
immune system-inspired optimization algorithms are
based on the applications of the clonal selection principle
[18]. Clonal selection algorithms have been popularized
mainly by de Castro and Von Zuben’s CLONALG [6].
CLONALG selects part fittest antibodies to clone propor-
tionally to their antigenic affinities. The hypermutation
operator generates the matured clone population by per-
forming an affinity maturation process inversely propor-
tional to the fitness values. After computing the
antigenic affinity of the matured clone population, CLO-
NALG creates randomly part new antibodies to replace
the lowest fitness antibodies in current population and
retain best antibodies to recycle. Subsequently, de Castro
and Timmis proposed an artificial immune network called
opt-aiNet [19] for multimodal optimization. In opt-aiNet,
antibodies are part of an immune network and the deci-
sion about the individual which will be cloned, suppressed
or maintained depends on the interaction established by
the immune network. Kelsey and Timmis proposed the
B cell Algorithm (BCA) in Ref. [20]. Through a process
of evaluation, cloning, mutation and selection, BCA
evolves a population of individuals (B cells) towards a
global optimum. Each member of the B cell population
can be considered as an independent entity. Garrett has
presented an attempt to remove all the parameters from
the clonal selection algorithm [21]. This method, which
is called ACS for short, attempts to self-evolve various
parameters during a single run. Cutello, Nicosia and Pav-
one proposed an immune algorithm for optimization
called opt-IA [22,23]. Opt-IA uses three immune opera-
tors, i.e. cloning, hypermutation and aging. In hypermuta-
tion operator, the number of mutations is determined by
mutation potential. The aging operator eliminates old
individuals to avoid premature convergence. Opt-IA also
uses a standard evolutionary operator, (l+k)-selection
operator. As far as multi-objective optimization is con-
cerned, MISA [24,25] may be the first attempt to solve
general multi-objective optimization problems using artifi-
cial immune systems. MISA encodes the decision vari-
ables of the problem to be solved by binary strings,
clones the Pareto-optimal and feasible solutions, and
applies two types of mutation to the clones and other
individuals, respectively. More recently, Freschi and Rep-
etto [26] proposed a vector artificial immune system
(VAIS) for solving multi-objective optimization problems
based on the opt-aiNet. VAIS adopted the flowchart of
opt-aiNet and the fitness assignment method in SPEA2
with some simplification that for Pareto-optimal individu-
als the fitness is the strength defined in SPEA2 and for
dominated individuals the fitness is the number of individ-
uals which dominate them. Cutello, Narzisi and Nicosia
[27] modified the (1+1)-PAES using two immune inspired
operators, cloning and hypermutation, and applied the
improved PAES to solving the protein structure predic-

tion problem. In order to compare these algorithms
clearly, we summarize them in Table 1 where SOPs are
short for single-objective optimization problems and
MOPs are short for multi-objective optimization
problems.

In this paper, based on the clonal selection theory and
the dynamic process of immune response, two novel arti-
ficial immune system algorithms, called secondary
response clonal programming algorithm (SRCPA) and
secondary response clonal multi-objective optimization
algorithm (SRCMOA), are presented. Clonal selection
operator (CSO) and secondary response operator (SRO)
are the main operators of SRCPA and SRCMOA.
Inspired by the clonal selection theory, CSO performs a
greedy search which reproduces individuals and selects
their improved maturated progenies after the affinity mat-
uration process, and so single individuals will be opti-
mized locally and the newcomers yield a broader
exploration of the search space. SRO copies certain anti-
bodies to a secondary pool, whose members do not par-
ticipate in CSO, but they could be activated by some
external stimulation. The update of the secondary pool
pays more attention to maintain the population diversity.
SRCPA adopts decimal representation rather than binary
representation and uses special mutation and recombina-
tion methods designed for large parameter optimization
problems. The experimental results indicate that SRCPA
converges faster than some existing evolutionary algo-
rithms, such as BGA [28], AEA [29], OGA/Q [30], IEA
[31] and IMCPA [32], for solving high-dimensional func-
tion optimization problems. SRCMOA tries to get more
various non-dominated solutions by combining CSO,
SRO and previous MOEAs’ techniques such as Pareto-
strength based fitness assignment strategy [33]. The per-
formance comparison between SRCMOA, NSGA-II
[34], SPEA [35], and PAES [36] based on the eight well-
known test problems shows that SRCMOA has a good
performance in converging to approximate Pareto-optimal
fronts with wide distributions.

Table 1
Main optimization algorithms inspired by immune system.

Algorithm Key operators Applications

CLONALG Elitist selection, cloning, mutation, death SOPs
Opt-aiNet Elitist selection, cloning, mutation, network

suppression, death
SOPs

BCA Cloning, metadynamics, contiguous
mutation, selection

SOPs

ACS Elitist selection, cloning, mutation, death SOPs
opt-IA ðlþ kÞ-selection, cloning, hypermutation,

hypermacromutation, aging
SOPs

MISA Elitist selection according to fitness and
diversity, cloning, uniform mutation and
non-uniform mutation, archive update

MOPs

VAIS Cloning, mutation, clonal selection,
suppression, death, archive update

MOPs

I-PAES Cloning, mutation, clonal selection, (1+1)-
selection, archive update

MOPs
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2. Immunology background and terms

2.1. Clonal selection and immune response

The ability of the immune system to respond to an anti-
gen exists before it ever encounters that antigen. The
immune system relies on the prior formation of an incredi-
bly diverse population of B cells and T cells. The specificity
of both the B-cell receptors (BCRs) and the T-cell receptors
(TCRs), i.e. the epitope to which a given receptor can bind,
is created by a remarkable genetic mechanism. Each recep-
tor is created even though the epitope it recognizes may
never have been present in the body. If an antigen with that
epitope should enter the body, those few lymphocytes able
to bind to it will do so. If they also receive the second co-
stimulatory signal, they may begin repeated rounds of mito-
sis. In this way, clones of antigen-specific lymphocytes (B
and T) provide the basis of the immune response. This phe-
nomenon is called clonal selection [18], which is a dynamic
process of the immune system self-adaptive against antigen
stimulation. According to Burnet, biological clonal selec-
tion occurs according to the degree that a B-cell matches
an antigen. A strong match causes a B-cell to be cloned
many times, and a weak match results in little cloning.

As shown in Fig. 1, after recovering from an infection,
the concentration of antibodies against the infectious agent
gradually declines over the ensuing weeks, months, or even
years. A time may come till antibodies against that agent
can no longer be detected. Nevertheless, the individual
often is still protected against the second case of the dis-
ease, i.e. the person is still immune. In fact, the second
exposure to the agent usually calls for a more rapid and lar-
ger response to the antigen. This is called the secondary
response. The secondary response reflects a larger number
of antigen-specific cells than those existed before the pri-
mary response. During the initial expansion of clones,
some of the progeny cells neither went on dividing nor
developed into plasma cells. Instead, they reverted to small
lymphocytes bearing the same BCR on their surface that
their ancestors had. This lays the foundation for a more
rapid and massive response when the next time the antigen
enters the body.

In immunology, the association among immune systems
is usually described as links of communication, and the fac-

tors determining the communication degree include cogniz-
ing or mistake, memory or forgetting, and knowledge or
ignorance. The recent studies primarily clarify that the abil-
ity of organism in selecting and recognizing adventitious
antigens comes from the selection and deletion of lympho-
cytes during the growth and differentiation process of
immune system. The change of antibodies’ quality and
quantity is closely influenced by antigens, B and T cells,
and other accessorial cells. B cells have the function of neg-
ative adjustment, maybe clonal deletion or clonal anergy
[37]. If the difference between B cells and antibodies is
ignored, the action of an antibody may be proliferation,
anergy or deletion during the immune response.

2.2. Terms in this paper

In order to describe the algorithms well, we define the
notations in our algorithms as follows, where boldface ita-
lic capital letters indicate matrices and boldface italic small
letters indicate vectors.

(i) Antigen: the objective function(s) to be optimized
(maximized or minimized).

(ii) Antibody: the representation of solution candidates.
The limited-length character string a is the coding of vari-
able vector x, denoted by a = encode(x); and x is called the
decoding of antibody a, expressed as x = decode(a).

Set I is called antibody space, namely a 2 I . The anti-
body population space is

In ¼ A : A ¼ ða1; a2; . . . ; anÞ; ak 2 I ; 1 6 k 6 nf g; ð1Þ
where the positive integer n is the size of antibody popula-
tion, and the antibody population A ¼ fa1; a2; . . . ; ang is an
n-dimensional group of antibody a, and it is a spot in the
antibody space I.

(iii) Affinity: the fitness measurement for an antibody.
For single-objective optimization problems, the affinity
F ð�ÞP 0 is a linear or nonlinear transformation of the
value of the objective function f ð�Þ for a given antibody.
For multi-objective optimization problems, the affinity
F ð�Þ is computed based on the Pareto-strength based fitness
assignment strategy in Ref. [33] but with a modification on
diversity preservation, which will be described in Section
4.2, and F ð�Þ is to be maximized both in SRCPA and in
SRCMOA.

Fig. 1. Primary and secondary immune responses.
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3. Clonal selection operator and secondary response operator

The mechanism of immune response and its characteris-
tics, such as self–non-self recognition, clonal selection,
memory learning, antibody diversity, immune tolerance
and adaptive regulation, are all important paradigms of
the research on AIS. Clonal selection operator (CSO) and
secondary response operator (SRO) are two operators sim-
ulating the dynamic process of immune response. CSO,
including clonal proliferation operation, affinity maturation
operation, and clonal selection operation, reproduces anti-
bodies and selects their improved progenies after the affinity
maturation process, respectively, and so single individuals
will be optimized locally and the newcomers yield a broader
exploration of the search space. SRO copies certain antibod-
ies to the secondary pool and the antibodies in the secondary
pool do not participate in CSO, but they could be activated
by some external stimulation, which is denoted as the activa-
tion operation of the secondary pool. A diversity mainte-
nance strategy in the update of the secondary pool can
maintain the population diversity efficiently.

3.1. Clonal selection operator

Inspired by the clonal selection theory, the CSO imple-
ments the clonal proliferation operation (T C

P ), affinity mat-
uration operation (T A

M) and clonal selection operation (T C
S )

on the antibody population AðkÞ, where the antibody pop-
ulation at time k is represented by the time-dependent var-
iable matrix AðkÞ ¼ fa1ðkÞ; a2ðkÞ; . . . ; anðkÞg. The evolution
process can be described as

AðkÞ!
T C

P
YðkÞ!

T A
M

ZðkÞ [ AðkÞ!
T C

S
Aðk þ 1Þ ð2Þ

The main operation of CSO is shown in Fig. 2.

3.1.1. Clonal proliferation operation

Define

YðkÞ ¼ T C
P ðAðkÞÞ ¼ ½T C

P ða1ðkÞÞT C
Pða2ðkÞÞ; . . . ; T C

P ðanðkÞÞ�T

ð3Þ

where Y iðkÞ ¼ T C
P ðaiðkÞÞ ¼ ei � aiðkÞ; i ¼ 1; 2; . . . ; n, and

ei is a qi-dimensional identity column vector.
There are various methods for calculating qi. In this

study, we compute it as follows:

qiðkÞ ¼ N c �
F ðaiðkÞÞ

Pn
j¼1F ðajðkÞÞ

& ’

i ¼ 1; 2; . . . ; n ð4Þ

where Nc > n is a given integer called clonal size. The value
of qi(k) is proportional to the value of F(ai(k)).

After clonal proliferation, the population becomes

YðkÞ ¼ Y1ðkÞ;Y2ðkÞ; . . . ;YnðkÞf g ð5Þ

where

Y iðkÞ ¼ fyijðkÞg ¼ fyi1ðkÞ; yi2ðkÞ; . . . ; yiqi
ðkÞg and

yijðkÞ ¼ aiðkÞ; j ¼ 1; 2; . . . ; qi i ¼ 1; 2; . . . ; n ð6Þ

3.1.2. Affinity maturation operation

Inspired by immune response process, the affinity matu-
ration operation T A

M is diversified basically by two mecha-
nisms: hypermutation and receptor editing [12,38,39].

Random changes are introduced into the genes, i.e.
mutation. Such changes may lead to an increase in the
affinity of the clonal antibody occasionally. Antibodies
had deleted their low-affinity receptors (genes) and devel-
oped entirely new ones through recombination, i.e. recep-
tor editing [12]. Receptor editing offers the ability to
escape from local optima on an affinity landscape.

After affinity maturation operation, the population
becomes

ZðkÞ ¼ fZ1ðkÞ;Z2ðkÞ; . . . ;ZnðkÞg ð7Þ

where

Z iðkÞ ¼ fzijðkÞg ¼ fzi1ðkÞ; zi2ðkÞ; . . . ; ziqi
ðkÞg and

zijðkÞ ¼ T A
MðyijðkÞÞ; j ¼ 1; 2; . . . ; qi i ¼ 1; 2; . . . ; n ð8Þ

3.1.3. Clonal selection operation

Define 8i ¼ 1; 2; . . . ; n; biðkÞ 2 Z iðkÞ is the best anti-
body (the antibody with the highest affinity) in Zi(k), then

Fig. 2. The main operational process of CSO.
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aiðk þ 1Þ ¼ T C
S ðZ iðkÞ [ aiðkÞÞ

¼
biðkÞ if F ðaiðkÞÞ < F ðbiðkÞÞ
aiðkÞ if F ðaiðkÞÞP F ðbiðkÞÞ

�

ð9Þ

The newcome population is

Aðk þ 1Þ ¼ T C
S ðZðkÞ [ AðkÞÞ

¼ ½T C
S ðZ1ðkÞ [ a1ðkÞÞ; T C

S ðZ2ðkÞ [ a2ðkÞÞ; . . . ;

T C
S ðZnðkÞ [ anðkÞÞ�T

¼ fa1ðk þ 1Þ; a2ðk þ 1Þ; . . . ; anðk þ 1Þg ð10Þ

where aiðk þ 1Þ ¼ T C
S ðZ iðkÞ [ aiðkÞÞ i ¼ 1; 2; . . . ; n.

Similar to the ðlþ kÞ � evolution strategies, i.e.
ðlþ kÞ� ES, CSO also selects new populations among
the offspring and parents together and employs
self-adapting genetic variation mechanisms. But here it
is necessary to point out that CSO has its own
characteristics.

Firstly, the clonal selection operation T C
S in CSO is

different from the truncation selection in ðlþ kÞ� ES
[40]. T C

S selects the best single individual ai(k+1) from the
sub-population Z iðkÞ [ aiðkÞ, respectively, and all the best
individuals aiðk þ 1Þ; i ¼ 1; 2; . . . ; n constitute the new
population. Therefore, single individuals will be optimized
locally (exploitation of the surrounding space) by the affin-
ity maturation process. However, truncation selection with
deterministic choice of the best l individuals from a set of k
offspring and l parents emphasizes on the global selection
on the whole population.

Secondly, ðlþ kÞ� ES often uses Gaussian or Cauchy
mutations and deterministic rules to control the step size.
For CSO, the mutation is implemented based on some
somatic mutation-inspired methods.

In fact, the mechanism of CSO is based on the clonal
selection principle rather than on the natural evolution.

3.2. Secondary response operator

In this study, we construct a secondary pool, which is
called SP for short. The SP is a special antibody population
whose members are not involved in CSO. The initial
SP Mð0Þ ¼ fm1ð0Þ;m2ð0Þ; . . . ;msð0Þg, where mið0Þ; i ¼
1; 2; . . . ; s, is generated randomly. The SP at time k is rep-
resented by the time-dependent variable matrix MðkÞ ¼
fm1ðkÞ;m2ðkÞ; . . . ;msðkÞg.

SRO includes update operation of SP, and activation
operation of SP. Since the problem features of single-objec-
tive and multi-objective optimization are different, we
design different update operations of SP for SRCPA and
SRCMOA, respectively.

3.2.1. Update operation of SP
For single-objective optimization problems, define

a�ðk þ 1Þ 2 Aðk þ 1Þ as the best antibody in antibody pop-
ulation A(k+1), then the update operation of SP can be
described as follows.

Calculating the distance between a�ðk þ 1Þ and each
member of M(k). If the distance between mj(k) and
a�ðk þ 1Þ is the minimum one, and its value is dj0, then
there are two cases to be considered. In the first case,
dj0 6 d0, where d0 is the minimum distance between every
two individuals of MðkÞ, then compare the affinities of
a�ðk þ 1Þ and mj(k), and let
>

mjðk þ 1Þ ¼
a�ðk þ 1Þ if F ða�ðk þ 1ÞÞ > F ðmjðkÞÞ
mjðkÞ else

�

ð11Þ
In the second case, dj0 > d0, then add the antibody

a�ðk þ 1Þ to SP, and delete the worst individual of SP.
For multi-objective optimization problems, SP pre-

serves the current non-dominated individuals of the anti-
body population. So the update operation of SP is
performed by copying all the non-dominated antibodies
from the combined population of A(k) and M(k) to
M(k+1). The individuals of SP can survive for several
generations, unless they are removed when dominated
by other new members or the current number of non-
dominated individuals s0 exceeds its upper limited s. If s0

is larger than s, then excess individuals should be dis-
carded using the environmental selection strategy in Ref.
[33]. Therefore, SP serves as an elite set which is useful
in maintaining the diversity and in improving the perfor-
mance of SRCMOA.

After the update operation, the SP becomes
Mðk þ 1Þ ¼ fm1ðk þ 1Þ;m2ðk þ 1Þ; . . . ;msðk þ 1Þg.

3.2.2. Activation operation of SP

The individuals of SP can retroact at antibody
population. The activation operation of MðkÞ ¼ fm1ðkÞ;
m2ðkÞ; . . . ;msðkÞg on the antibody population AðkÞ ¼
fa1ðkÞ; a2ðkÞ; . . . ; anðkÞg is described as follows: randomly
select t ¼ bT %� sc antibodies of M(k+1) to replace the
worst t antibodies of A(k), where T% is a constant called
activation ratio and s is the population size of SP. It can
be implemented as the following Algorithm 1:

Algorithm 1. Activation operation of SP

Step 1: Sort the antibodies in population A(k) as their
affinities and set A0ðkÞ ¼ fa01ðkÞ; a02ðkÞ; . . . ;
a0nðkÞg to the resulting population, where
F ða0iðkÞÞP F ða0iþ1ðkÞÞ i ¼ 1; 2; . . . ; n� 1.

Step 2: Calculate the number of antibodies that should
be activated: t ¼ bT %� sc.

Step 3: Antibody population updating: AðkÞ ¼ fa01ðkÞ;
a02ðkÞ; � � � ; a0n�tðkÞ;m1ðkÞ;m2ðkÞ; � � � ;mtðkÞg.

4. SRCPA and SRCMOA

Based on CSO and SRO, two algorithms are proposed
in this section. SRCPA is designed for solving single-objec-
tive optimization problems and SRCMOA is designed for
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solving multi-objective function optimization problems.
The main power of SRCPA and SRCMOA arises mainly
from CSO and SRO. In addition, decimal representation
makes SRCPA more suitable for solving high-dimensional
function optimization problems than other clonal selection
algorithms with binary representation. Special mutation
and recombination methods are adopted in SRCPA to sim-
ulate the hypermutation and receptor editing process.
SRCMOA adopts the Pareto strength based fitness assign-
ment strategy.

4.1. Secondary response clonal programming algorithm

SRCPA is designed for being an efficient general-pur-
pose optimization algorithm for solving large-scale optimi-
zation problems. We consider the following optimization
problem

maximize f ðxÞ; x ¼ ðx1; x2; . . . ; xDÞ 2 X ð12Þ
where f(x) is the objective function, x is a variable vector in
hD, X # hD defines the feasible solution space which is a D-
dimensional space bounded by the parametric constraints
xi 6 xi 6 �xi; i ¼ 1; 2; . . . ;D. Thus, the feasible solution
space X ¼ ½x; �x�, where x ¼ ðx1; x2; . . . ; xDÞ and
�x ¼ ð�x1;�x2; . . . ;�xDÞ.

4.1.1. Antibody representation and affinity measure

In this study, an antibody represents a search point in fea-
sible solution space. For the single-objective optimization
problem described in Eq. (12), an antibody a ¼ ða1; a2;
. . . ; alÞ ¼ encodeðxÞ is a normalized real-valued string, i.e.

a ¼ encodeðxÞ ¼ ðx� xÞ:=ð�x� xÞ ð13Þ
and so l = D, and 0 6 ai 6 1; i ¼ 1; 2; . . . ;D.

We adopt real-valued representation rather than bin-
ary representation since the test problems that we are
dealing with have continuous spaces, and real encoding
should be preferred to avoid problems related to ham-
ming cliffs.

For the single-objective optimization problem described
in Eq. (12), the affinity measure F(a) > 0 for antibody a is a
mapping of the value of the objective function f(x) where
a ¼ encodeðxÞ; x 2 X. In this study, we adopt the following
mapping function:

F ðaÞ ¼ ef ðdecodeðaÞÞ ð14Þ

The exponential function is an increasing function and it
holds that F(a) > 0 for all antibodies. Furthermore, the rate
of grade of the exponential function also increases with the
increasing variant value. It will redound to accelerate the
convergence during final iterations.

4.1.2. Main loop of SRCPA

The simple SRCPA can be described as follows:

Algorithm 2. Secondary response clonal programming
algorithm (SRCPA)

Step 1: Initialization: Randomly generate the initial anti-
body population
Að0Þ ¼ fa1ð0Þ; a2ð0Þ; . . . ; anð0Þg 2 In

Randomly generate the SP
Mð0Þ ¼ fm1ð0Þ;m2ð0Þ; . . . ;msð0Þg 2 I s

Calculate the affinity of all antibodies in A(0)
and M(0), k:=0.

Step 2: CSO:

Step 2.1: Clonal proliferation operation: Y(k) Get by
applying T C

P to A(k).
Step 2.2: Affinity maturation operation: Get Z(k) by

applying T A
M to Y(k).

Step 2.3: Evaluation: Calculate the affinity of all anti-
bodies of Z(k).

Step 2.4: Clonal selection operation: Get A(k+1) by
applying T C

S to ZðkÞ [ AðkÞ.
Step 3: SRO:

Step 3.1: Update operation of SP: Get the new SP
M(k+1) by update operation of M(k).

Step 3.2: Activation operation of SP: Update A(k+1)
by activation operation of M(k+1).

Step 4: Termination test: If a stopping condition is satis-
fied, stop the algorithm; otherwise, k:=k+1, go
to Step 2.

In SRCPA, we design the hypermutation and receptor
editing of CSO as follows.

For the antibody yijðkÞ; i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . qi

in the antibody population Y(k), replace its certain num-
bers by a random integer between 0 and 9. For example,
if a three-dimensional optimization problem is to be solved,
the antibody yij(k) = (1.233567, 12.334567,0.123356), and
the second variable’s fifth number is selected to mutate.
Then we can randomly generate an integer between 0 and
9 to take the place of the number ‘4’ in bold.

The receptor editing is designed similar to uniform recom-
bination. Let a ¼ ða1; a2; . . . ; aDÞ be the antibody to be edi-
ted. Then randomly select a member m ¼ ðm1;m2; . . . ;mDÞ
from the current SP M(k). Randomly generate a Boolean
vector r ¼ ðr1; r2; . . . ; rDÞ, where ri 2 f0; 1g; i ¼ 1; 2; . . . ;D.
Then the new antibody a0 is expressed as a0 ¼ fa01; a02; . . . ;
a0Dg, where

a0i ¼
ai if ri ¼ 0

mi if ri ¼ 1

�

; i ¼ 1; 2; . . . ;D ð15Þ

Furthermore, the hypermutation and receptor editing in
CSO is applied to each antibody of the antibody popula-
tion Y(k) with probability 1.

4.2. Secondary response clonal multi-objective optimization

algorithm

SRCMOA incorporates the Pareto strength-based fit-
ness assignment strategy, CSO and SRO, for solving
multi-objective optimization problems. The simple SRC-
MOA can be written as follows:
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Algorithm 3. Secondary response clonal multi-objective
optimization algorithm (SRCMOA).

Step 1: Initialization: Randomly generate the initial
antibody population

A(0) = {a1(0), a2(0), ... , an(0)} 2 In

Randomly generate the SP
M(0) = {m1(0), m1(0), ... , ms0)} 2 Is

Calculate the affinity of all antibodies in Að0Þ
and Mð0Þk :¼ 0.

Step 2: CSO:

Step 2.1: Clonal proliferation operation: Get YðkÞ by
applying T C

P to AðkÞ.
Step 2.2: Affinity maturation operation: Get ZðkÞ by

applying T A
M to YðkÞ.

Step 2.3: Evaluation: Calculate the affinity of all anti-
bodies of ZðkÞ, AðkÞ and MðkÞ.

Step 2.4: Clonal selection operation: Get A(k+1) by
applying T C

S to ZðkÞ [ AðkÞ.
Step 3: SRO:

Step 3.1: Update operation of SP: Get the new SP
M(k+1) by update operation of MðkÞ.

Step 3.2: Activation operation of SP: Update A(k+1)
by activation operation of M(k+1).

Step 4: Termination test: If a stopping condition is satis-
fied, stop the algorithm; otherwise, k:=k+1, go
to Step 2.

The main difference between the flows of SRCMOA and
SRCPA is the evaluation in Step 1 and Step 2.3.

In SRCMOA, each antibody bieB (in Step 1, B = A(0);
in Step 2.3, B ¼ ZðkÞ [ AðkÞ [MðkÞÞ is assigned an affinity
F ðbiÞ as follows.

Each individual bi e B is assigned a strength value SðbiÞ,
representing the number of individuals it dominates

SðbiÞ ¼ jfbjjj 2 B ^ bi � bjgj ð16Þ
where the symbol � corresponds to the Pareto-dominance
relation. Then let

RðbiÞ ¼
X

j

ðSðbjÞjbj 2 B ^ bj � biÞ: ð17Þ

RðbiÞ ¼ 0 indicates that the individual bi is not domi-
nated by any other antibodies, i.e. a non-dominated indi-
vidual, while a high RðbiÞ value means that bi is
dominated by many individuals.

For each individual bi the distances (in objective space) to all
individuals bj e B are calculated and stored in a list. After sorting
the list in increasing order, the sum of two smallest elements gives
the distance sought, denoted by dðpiÞ. The density DðbiÞ is
defined as DðbiÞ 1

dðpiÞþ1
. Afterwards, the affinity of bi is defined as

F ðbiÞ ¼ N � RðbiÞ � DðbiÞ: ð18Þ
Here, N is added in the affinity to make F ðbiÞ positive

and is maximized in the evaluation. Those individuals with
affinity between [N � 1,N] are considered to be non-domi-
nated individuals. We adopt binary representation and a
constant clonal size in SRCMOA. The hypermutation
and receptor editing in CSO are designed as the conven-
tional mutation operation, e.g. bit-inverse mutation.

5. Evaluation of SRCPA’s effectiveness

Experiments were carried out to evaluate the perfor-
mance of SRCPA by comparing with some existing EAs
using nine benchmark functions gleaned from the litera-
tures. The test function, parameter domain and global opti-
mum are listed in Table 2. In this study, when the variable
dimension is between 10 and 1000, the functions are called
high-dimensional functions. When the variable dimension
is larger than 1000, the functions are called superhigh-
dimensional functions.

Before comparing SRCPA with BGA [28], AEA [29],
OGA/Q [30], IEA [31], and IMCPA [32] in the following
experiments, we first give a brief description of the five
algorithms.

(1) BGA: It is based on an artificial selection similar to that
used by human breeders, and is a recombination of evo-
lution strategies and genetic algorithms. BGA uses trun-
cation selection as performed by breeders. This selection
scheme is similar to the (l,k) strategy in evolution strat-
egies. The search process of BGA is mainly driven by
recombination, making BGA a genetic algorithm.

Table 2
Benchmark functions for SRCPA.

Test functions Parameter domain Optimum

f1ðxÞ ¼
PD

i¼1x2
i [�100,100] 0 (min)

f2ðxÞ ¼
PD

i¼1jxij þ
QD

i¼1jxij [�10,10] 0 (min)

f3ðxÞ ¼
PD

i¼1ð
Pi

j¼1xjÞ2 [�100,100] 0 (min)

f4ðxÞ ¼
PD

i¼1ix4
i þ random½0; 1Þ [�1.28,1.28] 0 (min)

f5ðxÞ ¼ 1
D

PD
i¼1ðx4

i � 16x2
i þ 5xiÞ [�5,5] �78.33236 (min)

f6ðxÞ ¼ 10Dþ
PD

i¼1ðx2
i � 10 cosð2pxiÞÞ [�5.12,5.12] 0 (min)

f7ðxÞ ¼ �
PD

i¼1xi sinð
ffiffiffiffiffiffi

jxij
p

Þ [�500,500] �412.9829D (min)

f8ðxÞ ¼
PD

i¼1
x2

i
4000�

QD
i¼1 cosð xi

ffi

i
p Þ þ 1 [�600,600] 0 (min)

f9ðxÞ ¼ �20 exp �0:2
ffiffiffi

1
D

q

PD
i x2

i

� �

� exp 1
D

PD
i¼1 cosð2pxiÞ

� �

þ 20þ e [�30,30] 0 (min)
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(2) AEA: This is a modified version of BGA. Besides the
new recombination operator and the mutation oper-
ator, each individual of AEA is coded as a vector
with components all in the unit interval, and inver-
sion is applied with some probability to the parents
before recombination is performed.

(3) OGA/Q: This is a modified version of the classical
genetic algorithm (CGA). It is the same as CGA, except
that it uses the orthogonal design to generate the initial
population and the offspring of the crossover operator.

(4) IEA: This is also an evolutionary algorithm based on the
orthogonal design. IEA uses a novel intelligent gene col-
lector (IGC) in recombination. Based on the orthogonal
experimental design, IGC uses a divide-and-conquer
approach, which includes adaptively dividing two indi-
viduals of parents into N pairs of gene segments, eco-
nomically identifying the potentially better one of two
gene segments of each pair, and systematically obtaining
a potentially good approximation to the best one of all
combinations using at most 2N fitness evaluations.

(5) IMCPA: IMCPA is a modified clonal selection algo-
rithm for solving the global single-objective optimiza-
tion problem. IMCPA runs at two populations,
namely antibody population and SP, side-by-side.
The main operations on two populations are similar,
but the practical handles have some differences, and
they have different functions: the antibody popula-
tion is the basic population acting on antigens and
emphasizes the global search, while SP emphasizes
the self-adaptive local search in the defining space.

5.1. Performance comparisons on high-dimensional functions

Table 3 shows the statistical results of SRCPA, IMCPA,
IEA and OGA/Q, where the reported results of IMCPA,

IEA and OGA/Q are obtained from Refs. [3–32]. The popu-
lation size of SRCPA is 10, the clonal size is 15, the size of SP
is 5, and the activation ratio is 50%. The termination criterion
of SRCPA is that the given optimal value is reached or the
best solution cannot be further improved in successive 30 iter-
ations, which is the same as that in Ref. [31]. Each result of
SRCPA is obtained from 50 independent runs. All the test
functions can be categorized into three classes by carefully
examining the simulation results in Table 3 as follows:

(1) Functions f1, f2, f3, f6, and f8: The globally optimal solu-
tion exists in the orthogonal array-based initial popula-
tions generated using the methods of OGA/Q and IEA,
respectively. Therefore, OGA/Q and IEA can obtain the
optimal solution with a zero standard deviation. Owing
to the termination criterion, the solution quality of
SRCPA is worse than that of OGA/Q and IEA, but
SRCPA can reduce the number of function evaluations
sufficiently. SRCPA performs better than IMCPA in
terms of both solution quality and computational cost.

(2) Functions f4 and f9: The globally optimal solution
exists in the orthogonal array-based initial populations
generated using the method of IEA, but not in that of
OGA/Q. Therefore, IEA can obtain the optimal solu-
tion with a zero standard deviation. The solution qual-
ity of SRCPA is worse than that of IEA, but SRCPA
performs better than IMCPA and OGA/Q in terms
of both solution quality and computational cost.

(3) Functions f5 and f7: The globally optimal solution
does not exist in either the orthogonal array-based
initial populations generated using the method of
IEA or that of OGA/Q. SRCPA performs much bet-
ter than OGA/Q, IEA, and IMCPA, not only in
terms of the solution quality but also in terms of com-
putational cost.

Table 3
Performance comparison of SRCPA, IMCPA, IEA and OGA/Q.

f D Mean number of function evaluations Mean function value
(standard deviation)

SRCPA IMCPA IEA OGA/Q SRCPA IMCPA IEA OGA/Q

f1 30 1,238 2,173 16,840 112,559 1.592031 � 10�7

(2.674927 � 10�7)
2.038235 � 10�7

(3.170165 � 10�7)
0

(0)

0

(0)

f2 30 1,304 2,729 8,420 112,612 2.224406 � 10�9

(3.472134 � 10�9)
2.443007 � 10�9

(3.669766 � 10�9)
0

(0)

0

(0)

f3 30 2,636 4,196 16,840 112,576 2.206835 � 10�10

(2.862637 � 10�10)
2.575336 � 10�10

(3.175653 � 10�10)
0

(0)

0

(0)

f4 30 8,244 22,402 8,420 112,652 2.576724 � 10�4

(1.740283 � 10�4)
4.381959 � 10�4

(2.897946 � 10�4)
0

(0)

6.301 � 10�3

(4.069 � 10�4)
f5 100 2,752 5,806 184,711 245,930 �78.33234

(2.339041 � 10�8)

�78.33119
(2.902509 � 10�4)

�78.33232
(6.353 � 10�6)

�78.3000296
(6.288 � 10�3)

f6 30 1,295 2,087 8,420 224,710 7.763717 � 10�12

(1.678557 � 10�11)
1.158469 � 10�11

(2.334151 � 10�11)
0

(0)

0

(0)

f7 30 2,083 4,973 54,706 302,166 �12569.49

(1.034761 � 10�6)

�12569.49
(5.946202 � 10�6)

�12569.49
(6.079 � 10�3)

�12569.4537
(6.447 � 10�4)

f8 30 1,624 3,516 16,840 134,000 1.6565 � 10�15

(2.743451 � 10�15)
1.931788 � 10�15

(2.773929 � 10�15)
0

(0)

0

(0)

f9 30 1,993 4,295 8,420 112,421 1.8829 � 10�16

(2.490513 � 10�17)
3.019807 � 10�15

(3.432247 � 10�15)
0

(0)

4.440 � 10�16

(3.989 � 10�17)
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OGA/Q and IEA apply the orthogonal design to gener-
ate an initial population of points that are scattered uni-
formly over the feasible solution space, so that the
algorithm can evenly scan the search space once to locate
good points for further exploration in subsequent itera-
tions. They also use the recombination methods based on
the orthogonal design. Therefore, OGA/Q and IEA can
obtain an accurate solution, but a large number of function
evaluations are needed.

SRCPA reproduces individuals and selects their
improved maturated progenies after the affinity maturation
process, thus single individuals will be optimized locally
and the newcomers yield a broader exploration of the
search space. The update operation of SP pays more atten-
tion to maintain the population diversity, and the activa-
tion operation of SP accelerates the convergence speed.
Therefore, SRCPA can obtain a satisfying solution, even
though it is not the optimal solution with a much smaller
number of function evaluations.

Because the size of the search space and the number of
local minima increase with the problem dimension, the
higher the dimension is, the more difficult the problem is.
Therefore, the following experiment studies the perfor-
mance of SRCPA on functions with 20–1000 dimensions.

The experiment results of SRCPA, IMCPA, AEA and
BGA optimizing the functions f6, f7, f8, and f9 with various
dimensions are shown in Table 4. The termination criterion
of SRCPA is that one of the objectives, j fbest � fmin j< e�
j fmin j or j fbest j< e if fmin ¼ 0, is reached. We use
e ¼ 10�1 for f6, e ¼ 10�4 for f7 and e ¼ 10�3 for f8 and f9,

which is the same as that in BGA, AEA and IMCPA. Each
result of SRCPA is obtained from 30 independent runs.
The reported results of IMCPA, AEA, and BGA are
obtained from their references.

As can be seen from Table 4, for all the four functions,
the number of function evaluations of SRCPA is much
smaller than those of IMCPA, AEA and BGA at all dimen-
sions. Therefore, SRCPA obtains satisfying solutions at a
lower computational cost than BGA, AEA and IMCPA,
and it displays a good performance in solving large param-
eter optimization problems.

5.2. Performance comparisons on superhigh-dimensional

functions

In order to further test the scalability of SRCPA along
the problem dimension further, we use SRCPA and other
algorithms to optimize f6, f7, f8 and f9 with higher dimen-
sions, respectively.

With the same parameters as used in Section 5.1, the
problem dimension is increased from 2000 to 30,000. The
termination criterion of SRCPA is that one of the objec-
tives, j fbest � fmin j< e� j fmin j or j fbest j< e if fmin ¼ 0, is
reached. We use e ¼ 10�1 for f6, e ¼ 10�4 for f7 and
e ¼ 10�3 for f8 and f9. Table 5 shows the mean number of
function evaluations of SRCPA and IMCPA obtained
from 30 independent runs. AEA and BGA cannot obtain
satisfying solution in 12 h, so we do not list them in the
table. When N > 10,000, IMCPA also cannot attain satisfy-
ing solution in 12 h which denoted by ‘‘/” in the table. The
simulation results show that SRCPA also has a fast conver-
gence speed for superhigh-dimensional functions, which is
impossible for some other algorithms.

Further analysis indicates that, under the same condi-
tion, the numbers of function evaluations are approxi-
mately linear with the problem dimension. The numbers
of function evaluations for f6, f7, f8, f9 versus the problem
dimension are shown in Fig. 3. It can be seen that when
the variable dimension added one, the mean number of
function evaluations increases no more than 13.

5.3. Sensitivity in relation to parameters

In order to study the effects of the main parameters on
algorithm performance when running SRCPA, the follow-
ing experiments consider the problems of f6, f7, f8, f9 to be
solved by SRCPA with various antibody population size,
clonal size, secondary pool size, and activation ratio.

5.3.1. Sensitivity in relation to antibody population size and

clonal size

The experimental results of SRCPA on optimizing the
functions f6, f7, f8, f9 with the antibody population size n

increasing from 5 to 70 and the ratio between clonal size
and population size, i.e. N c=n, called clonal scale, increas-
ing from 1 to 20 are shown in Fig. 4. The values of the
other parameters are as follows: the SP size is 5, the activa-

Table 4
Performance comparisons of SRCPA, IMCPA, AEA and BGA.a

Functions D Mean number of function evaluations

SRCPA IMCPA AEA BGA

f6 20 693 1469 1247 3608
100 2453 4988 4798 25040
200 3877 5747 10370 52948
400 6455 12563 23588 112634

1000 11592 24408 46024 337570

f7 20 1197 3939 1603 16100
100 3789 11896 5106 92000
200 6990 16085 8158 248000
400 11722 26072 13822 699803

1000 22375 60720 23687 /

f8 20 1035 2421 3581 40023
100 3181 6713 17228 307625
200 5037 8460 36760 707855
400 8564 15365 61975 1600920

1000 15138 30906 97600 /

f9 20 803 1776 7040 197420
100 2943 5784 22710 53860
200 4859 9728 43527 107800
400 6092 13915 78216 220820

1000 13362 26787 160940 548306

a) ‘/’ denotes that relevant data were not found.
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tion ratio is 50%, and the problem dimension is 20. The ter-
mination criterion is the same as that in Section 5.2. The
data are the statistical results obtained from 50 indepen-
dent runs.

The results in Fig. 4 show that, antibody population size
and clonal size have large effects on the performance of
SRCPA. The number of function evaluations increases
almost linearly with the increasing antibody population
size or clonal scale. After approximating the number of
function evaluations by Oðl� n� N cÞ, we find that when
the antibody population size increases by one the average
numbers of function evaluations on optimizing functions
f6, f7, f8, f9 increase by about lf6

� 43:7067, lf7
�

73:4533, lf8
� 57:96673, and lf9

� 57:96673, respectively.
When the clonal size increases by one, the average numbers
of function evaluations on optimizing functions f6, f7, f8, f9

increase about lf6
� 16:3847, lf7

� 21:5700, lf8
� 20:6946,

and lf9
� 18:9660, respectively. Thus, increasing the clonal

size will result in a less increment in the number of function
evaluations than increasing the antibody population size.
In addition, the bigger clonal size also helps to extend the
searching scope. However, we also found in experiment
that the larger antibody size improves the diversity of
population.

Table 5
Performance comparison of SRCPA and IMCPA on superhigh-dimensional functions.

D f6 f7 f8 f9

SRCPA IMCPA SRCPA IMCPA SRCPA IMCPA SRCPA IMCPA

2000 21346 37879 42794 90001 23153 43003 19480 41880
5000 32590 87245 64352 136869 36088 125847 28858 83125
10000 55730 143700 123600 235840 58698 147037 80716 138487
20000 103546 / 196578 / 143654 / 118078 /

30000 151990 / 269402 / 213096 / 145719 /

Fig. 3. The mean number of function evaluations versus problem
dimensions.

Fig. 4. SRCPA sensitivity in relation to antibody population size and clonal size. (a) f6; (b) f7; (c) f8; (d) f9.
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5.3.2. Sensitivity in relation to SP size and activation ratio

The experimental results of SRCPA on optimizing func-
tions f6, f7, f8, f9 with the secondary pool size s increasing
from 1 to 10 and activation ratio T% increasing from 0
to 1 are shown in Fig. 5. The values of the other parameters
are as follows: the antibody population size is 10, the clonal
size is 15, and the problem dimension is 20. The termina-
tion criterion is the same as that in Section 5.2. The data
are the statistical results obtained from 50 independent
runs.

From the above results, we conclude that the effect of SP
size on the number of function evaluations is weaker than
those of antibody population size and clonal size. The lar-
ger the SP size is, the fewer the number of function evalu-
ations is. The activation ratio has a rather weak influence
on the performance, especially when the variable dimen-
sion is low. Generally, when T% is set around 50%, the
number of function evaluations is rather few.

6. Evaluation of SRCMOA’s effectiveness

In this section, we compare the performance of SRC-
MOA with NSGA-II, SPEA and PAES through eight
well-known multi-objective test functions. In order to dem-
onstrate the workings of these methods, we give both the
statistical results of two performance metrics, the conver-
gence metric and the diversity metric. In the last part of this
section, we also describe the additional experiments to
show the behavior of SRCMOA with different parameter
settings.

6.1. Test functions and performance metrics

At first, we describe the eight test functions in this study.
Veldhuizen have cited most of these test functions in Ref.
[41], and here we choose three of them, i.e. Fonseca’s sec-
ond problem, Poloni’s problem and Schaffer’s first prob-
lem, and call them FON, POL and SCH, respectively.
We also choose five test problems which followed the
guidelines suggested by Deb [42] and then designed by Zil-
ter, Deb and Thiele in 2000 [43]. We call them ZDT1,
ZDT2, ZDT3, ZDT4, ZDT6 here. Table 6 summarizes
the numbers of variables, the variable domain, the descrip-
tion of objective functions of these test problems and the
comments about their Pareto-optimal fronts.

The goal of the multi-objective optimization algorithms
is to find a Pareto-optimal set or approximate it. On one
hand, the smaller the distance to the Pareto-optimal set,
the better it would be; on the other hand, the more diverse
the achieved non-dominated solution, the better it would
be. Zitzler et al. [44] suggested that for a k-objective optimi-
zation problem, at least k performances are needed to com-
pare two or more solutions and an infinite number of
metrics to compare two or more sets of solutions. Several
widely used metrics have been proposed. Since there has
not been such a performance metric that can deal with both
tasks adequately, we adopt two performance metrics sug-
gested by Deb [34], the convergence metric c and the diver-
sity metric D, which are more direct in evaluating the above
two goals in a solution set and make a complement in the
whole performance comparison.

Fig. 5. SRCPA sensitivity in relation to SP size and activation ratio. (a) f6; (b) f7; (c) f8; (d) f9.
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Table 6
Test problems for SRCMOA.

Problem n Variable domain Objective function Comments

FON 3 ½�4; 4�
f1ðxÞ ¼ 1� exp �

X

n

i¼1

ðxi �
1
ffiffiffi

n
p Þ2

 !

f2ðxÞ ¼ 1� exp �
X

n

i¼1

ðxi þ
1
ffiffiffi

n
p Þ2

 !

Non-convex

POL 2 ½�p;p� f1ðxÞ ¼ ½1þ ðA1 � B1Þ2 þ ðA2 � B2Þ2�
f2ðxÞ ¼ ½ðxþ 3Þ2 þ ðy þ 1Þ2�
A1 ¼ 0:5 sin 1� 2 cos 1þ sin 2� 1:5 cos 2;

A2 ¼ 1:5 sin 1� cos 1þ 2 sin 2� 0:5 cos 2;

B1 ¼ 0:5 sin x� 2 cos xþ sin y � 1:5 cos y;
B2 ¼ 1:5 sin x� cos xþ 2 sin y � 0:5 cos y

Non-convex disconnected

SCH 1 ½�103; 103� f1ðxÞ ¼ x2

f2ðxÞ ¼ ðx� 2Þ2
Convex

ZDT1 30 ½0; 1� f1ðxÞ ¼ x1

f2ðxÞ ¼ gðxÞ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1=gðxÞ
p

h i

gðxÞ ¼ 1þ 9
X

n

i¼2

xi

 !,

ðn� 1Þ

Convex

ZDT2 30 ½0; 1� f1ðxÞ ¼ x1

f2ðxÞ ¼ gðxÞ 1� ðx1=gðxÞÞ2
h i

gðxÞ ¼ 1þ 9
X

n

i¼2

xi

 !,

ðn� 1Þ

Non-convex

ZDT3 30 ½0; 1� f1ðxÞ ¼ x1

f2ðxÞ ¼ gðxÞ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1=gðxÞ
p

� x1

gðxÞ sinð10pxiÞ
� �

gðxÞ ¼ 1þ 9
X

n

i¼2

xi

 !,

ðn� 1Þ

Convex disconnected

ZDT4 10 ½0; 1� f1ðxÞ ¼ x1

f2ðxÞ ¼ gðxÞ½1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1=gðxÞ
p

�

gðxÞ ¼ 1þ 10ðn� 1Þ þ
X

n

i¼2

½x2
i � 10 cosð4pxiÞ�

Non-convex

ZDT6 10 ½0; 1� f1ðxÞ ¼ 1� expð�4x1Þ sin6ð4px1Þ
f2ðxÞ ¼ gðxÞ½1� ðf1ðxÞ=gðxÞÞ2�

gðxÞ ¼ 1þ 9½ð
X

n

i¼2

xiÞ=ðn� 1Þ�0:25

Non-convex non-uniformly
spaced
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6.2. Performance comparisons with NSGA-II, SPEA and

PAES

In the following experiments, we performed 10 indepen-
dent runs for each algorithm on each test function. The ter-
mination criterion is to run 250 generations. For NSGA-II,
SPEA and PAES, we directly use the results in Ref. [34].
Both binary coded and real-coded NSGA-II are able to
converge to the Pareto-optimal front on these eight test
problems, but real-coded NSGA-II is able to find a better
spread of solutions than binary-coded NGSA-II on most
problems. Therefore, we use real-coded NSGA-II as the
compared algorithm here. For SRCMOA, we have some
common parameter settings the same as the other com-
pared algorithms, including the antibody population size
of 100. Each decision variable is also binary-coded with
30 bits. The special parameters concerned with the CSO
and SRO in IFCOMA are summarized as follows: the size
of SP size is 100, the clonal scale is 3, and the activation
ratio is 10%.

The final non-dominated solutions obtained by IFCO-
MA at the end of 250 generation are reported. Tables 7
and 8 show the direct comparison of SRCMOA with
NSGA-II, SPEA and PAES based on the two performance

metrics. The mean and the variance of the results are pre-
sented for each test problem.

As can be seen from Tables 7 and 8 SRCMOA can con-
verge to the true Pareto-optimal fronts with a good distri-
bution for most test problems except ZDT4, for which
SRCMOA does not find a well-converged non-dominated
solution set. The mean values of diversity metric obtained
by SRCMOA are the best for all the test problems,
although the mean values of convergence metric obtained
by SRCMOA are not always the best. SRCMOA can find
a better convergence in ZDT3, while NSGA-II does better
in FON, POL and ZDT4, SPEA in ZDT1 and ZDT2, and
PAES in SCH and ZDT6. However, the difference in the
mean values of c between SRCMOA and the algorithms
which can find better convergence is small, as well as the
variance of c in the 10 runs. Therefore, Tables 7 and 8 indi-
cate the effective convergence ability in the objective space
and the reasonable distribution obtained by SRCMOA for
solving most test problems.

6.3. Sensitivity in relation to parameters

In this section, we have some additional experiments
based on various secondary pool size, antibody population

Table 7
Statistical values of the convergence metric c.

Algorithm FON POL SCH ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

SRCMOA

Mean 0.021221 0.026850 0.001618 0.022175 0.026488 0.014208 5.739007 0.263232
Variance 0.000004 0.000002 0 0.000024 0.000048 0.000047 5.635990 0.001702

NSGA-II

Mean 0.001391 0.015553 0.003391 0.033482 0.072931 0.114500 0.513053 0.296564
Variance 0 0.000001 0 0.004750 0.031689 0.007940 0.118460 0.013135

SPEA

Mean 0.125692 0.037812 0.003403 0.001799 0.001339 0.047517 7.340299 0.221138
Variance 0.000038 0.000088 0 0.000010 0 0.000047 6.572516 0.000449

PAES

Mean 0.151263 0.030864 0.001313 0.082085 0.126276 0.023872 0.854816 0.085469

Variance 0.000905 0.000431 0.000003 0.008679 0.036877 0.000010 0.527238 0.006664

Table 8
Statistical values of the diversity metric D.

Algorithm FON POL SCH ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

SRCMOA

Mean 0.137296 0.012475 0.146967 0.189493 0.252527 0.126205 0.310665 0.311588

Variance 0.001519 0.000001 0.000715 0.001803 0.002000 0.000576 0.018005 0.007565

NSGA-II

Mean 0.378065 0.452150 0.477899 0.390307 0.430776 0.738540 0.702612 0.668025
Variance 0.000639 0.002868 0.003471 0.001876 0.004721 0.019706 0.064648 0.009923

SPEA

Mean 0.792352 0.972783 1.021110 0.784525 0.755148 0.672938 0.798463 0.849389
Variance 0.005546 0.008475 0.004372 0.004440 0.004521 0.003587 0.014616 0.002713

PAES

Mean 1.162528 1.020007 1.063288 1.229794 1.165942 0.789920 0.870458 1.153052
Variance 0.008945 0 0.002868 0.004839 0.007682 0.001653 0.101399 0.003916
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size, clonal scale, and activation ratio. We made these
efforts to find the effects of the main parameters on algo-
rithm performance when running SRCMOA, in order to
choose a group of more reasonable parameters for
SRCMOA.

6.3.1. Sensitivity in relation to SP size and antibody

population size

First, we keep other parameters the same as before, but
increase the secondary pool size to 150. Table 9 presents
the statistical results of 10 independent runs based on the
convergence metric and diversity metric for the eight prob-
lems. We can see that after increasing the secondary pool
size, SRCMOA could convergence to the true Pareto-opti-
mal front better and obtain a better distribution on most
test problems.

In Table 9, SRCMOA converges better on the test prob-
lems FON, ZDT1, ZDT2 and ZDT3. For POL and SCH,
the mean values of c are similar to the values obtained with
the secondary pool size 100. But for ZDT4 and ZDT6, it
seems difficult for SRCMOA to have some improvement
on the convergence by simply increasing the secondary
pool size. Although SRCMOA behaves differently on the
above test problems based on the convergence metric c,
the distribution of the non-dominated solutions is
improved except ZDT4. So the ability to converge to the
true Pareto-optimal front and find a diverse set is not a dif-
ficulty for SRCMOA in solving the above test problems
except ZDT4 and ZDT6.

Therefore, we do additional experiments on ZDT4 and
ZDT6 with a larger antibody population size from 150 to

300 and the secondary pool size of 200. For them, 10 inde-
pendent runs are performed with the other parameters, the
same as those in Section 6.2. Fig. 6 shows the distribution
of the convergence metric with different parameter settings.
We can see that when the antibody population size and the
secondary pool size are increased, the performance of
SRCMOA on ZDT4 and ZDT6 is greatly improved. A lar-
ger population size may provide more opportunities for the
algorithm to find global optimal solutions and a larger sec-
ondary pool size may maintain a better diversity, which
also helps the algorithm to jump out the local optimal
solutions.

6.3.2. Sensitivity in relation to activation ratio and clonal
scale

Experiments are designed in this section to find a
responsible activation ratio T % for SRCMOA to have a
better performance on most test problems. The activation
ratio T % is assigned from 10% to 50% while keeping other
parameters the same as those in Section 6.2. Fig. 7 shows
the distribution of the convergence metric on POL and
ZDT1.

Fig. 7 shows that we can get the better evaluation values
when T % is set to be 10%. When T % becomes higher, the
values of the convergence metric c rise too, which indicates
that the quality of non-dominated solutions obtained by
SRCMOA declines. Since the secondary pool stores the
current non-dominated solutions, a too high activation
ratio in the activation operation of SP will lead to a low
diversity in the antibody population and make SRCMOA
easy to drop in the local optimal solutions.

Table 9
Statistical values of the convergence metric c and diversity metric D.

Metric FON POL SCH ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

c
Mean 0.020419 0.027437 0.001657 0.017363 0.018886 0.008582 6.398918 0.318327
Variance 0.000004 0.000003 0 0.000003 0.000017 0.000002 3.003854 0.002116

D
Mean 0.113090 0.012107 0.133890 0.191964 0.215481 0.103501 0.484570 0.287365
Variance 0.000927 0 0.000777 0.000601 0.001137 0.000104 0.034426 0.009445

Fig. 6. The distributions of the convergence metric for ZDT4 and ZDT6. (a) ZDT4; (b) ZDT6. The values of horizontal coordinate correspond to four
situations, from left to right are (150, 200), (200, 200), (250, 200), and (300, 200), where the first number is the antibody population size and the second one
is the secondary pool size.
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Fig. 8 shows the distribution of the convergence metric
of SRCMOA with different clonal scales obtained from
10 independent runs on ZDT1, ZDT2, ZDT3 and ZDT6.
Clonal selection operation reproduces antibodies and
selects their improved progenies after the affinity matura-
tion process. The higher clonal scale allows a more diverse
population around each individual, both the convergence
and diversity would be improved obviously. However, the
numbers of function evaluation increase with the increas-
ing clonal scale. For a roughly equivalent number of func-
tion evaluation with the other algorithms, the clonal scale
is set to be 3 in the normal tests.

7. Conclusions

In this study, we have proposed two novel artificial
immune system algorithms SRCPA and SRCMOA by
using two immune operators CSO and SRO to solve single
and multi-objective optimization problems. CSO performs

a greedy search, which reproduces individuals and selects
their improved maturated progenies after the affinity mat-
uration process, and so single individuals will be optimized
locally and the newcomers yield a broader exploration of
the search space. SRO copies certain antibodies to the sec-
ondary pool whose members do not participate in CSO.
Furthermore, the update of the secondary pool pays more
attention to maintain the population diversity. SRCPA
adopts decimal representation rather than binary represen-
tation and uses special mutation and recombination meth-
ods designed for large parameter optimization problems.
The experimental results indicate that SRCPA converges
faster than some existing evolutionary algorithms such as
BGA, AEA, OGA/Q, IEA and IMCPA, in terms of solving
complex problems such as high-dimensional function
optimizations. SRCMOA combines the CSO, SRO and
previous MOEAs’ techniques to get more various non-
dominated solutions. The numerical experiments on the
well-known test problems show that SRCMOA has a good

Fig. 7. The distributions of the convergence metric for POL and ZDT1. (a) POL; (b) ZDT1. The values of horizontal coordinate corresponding to
different values of activation ratio, from left to right are: 10%, 20%, 30%, 40%, and 50%.

Fig. 8. The distributions of the convergence metric for ZDT1, ZDT2, ZDT3 and ZDT6. (a) ZDT1; (b) ZDT2; (c) ZDT3; (d) ZDT6. The values of
horizontal coordinate corresponding to different values of clonal scale, from left to right are 2, 3, 4, and 5.
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performance in converging to approximate Pareto-optimal
fronts with wide distributions on most of the problems.
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